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Dipolar interaction in a colloidal plasma
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The dipole-dipole interaction between macroscopic grains in a plasma is calculated. The presence of a
plasma medium shields the Coulomb grain interactions as well as necessitates that nonzero temperature effects
be accounted for. The resulting electrostatic but not so much the Helmholtz free energy shows overshooting
when equal strength parallel dipoles align with or are perpendicular to the line joining their centers. More
striking is the appearance of a short range attractive well interaction for anglesrf$edarhe contribution of
the dipole-dipole to the total interaction in so-called plasma crystals has become increasingly recognized.

PACS numbe(s): 52.25.Zb, 36.90f

[. INTRODUCTION the nimble plasma particles are continually redistributing
themselves so as to cancel out the long range part of the
Micron size dust particles, or grains charged by plasmayrain field, yielding an effective grain field that is short
have been observed to form crystalline phases as well asinged.
isolated and agglomerated pairs in low temperature plasmas The final lattice configuration is obtained by allowing the
[1,2]. Such grains are common contaminants in low pressurgrains to slowly and isothermally approach each other while
(100's mtory, partially ionized (ion density 18<n;  maintaining the volume of the system constant. At these low
<10" cm~®) plasma processing rf electrical glow dis- temperatures the energy, both potential and kinetic, of the
charges. The grains charge negatively and particles microngackground plasma is comparable to the energy of the
in size (radiusfraction um=<a<100 xm) can have up to grains, and must be taken into account in discussing the sta-
tens of thousands of elementary charges—10F electron  bility of lattices. By fixing the plasma temperatufe the
charges according to various estimates. The negative chargglimholtz free energy acts as the “effective potential en-
balances the flux of electrons and ions to the grain surfacergy” for the system.
generating floating potentials of (1.5-B), the electron The importance of the dipole interaction in these struc-
temperature being in the rang2-5 eV. In plasma cham- tures has become increasingly recognizg&fl Under some
bers these structures are found at the edge of the plasm@anditions, deformed and oriented three dimensional close
above a negative dc self-biased electrode where an electrggacked lattices of bcc, fcc, or hep type, but mostly triangular
field exists. The field balances ion drag and gravitationakrrays of vertical chains of grains are seen.These unusual
forces thus keeping the grains afloat. In this region thehases have recently been explained as due to dipole-dipole
plasma temperature and Debye length are characterized Iyteractions. Detailed lattice structures and highly complex
the electron values, withpe=4x10"? cm. These struc- phase diagrams have been calculated based on this interac-
tures should also form in the bulk plasma which is charaction [4]. At low dipole strengths, the dipole interaction is
terized by zero electric field, the ion temperature and the iomanifest in the preferred orientation of the cubic lattices. At
Debye lengthhp;=5x10"% cm. In plasma crystals the intermediate strengths, the triangular and hcp lattices begin
grain density is of the ordmlgzlo4 cm % while the grain  to coexist with the preferred cubic lattices. At still higher
and ion temperatures are approximately room temperaturgtrengths, the triangular array of vertical chains is preferred.
Ty<T;=300 K. A simple estimate shows that since grainThe stability of these lattices against excitations, namely
densities are<10® cm™? in the lattice, they can be treated compression and vibration, has also been investigated. Other
as distinct entities. studies, using the same dipole interaction, have addressed
The assembly of a colloidal plasma crystal is viewed heravaves in dusty plasma crysta[§]. The effective two-
as starting from a configuration with each grain initially un- particle interaction has been incorporated into a lattice wave
charged and infinitely separated in a neutral plasma bacldispersion relation. Compared to the zero dipole case, the
ground of mobile singly charged ions and electrons. Thesound speed is reduced from that of a lattice with purely
grains are treated as “external” to the plasma gas, not asmonopole interactions. The reduction is attributed to a long-
additional constituents of the screening medium. Due to theange dipole contribution which arises as a result of plasma
difference between ion and electron mobilities, the grainscreening.
become charged, typically in a fraction of a second. The In these studies, point grains of equal size have been as-
response of the plasma particles is treated in the adiabatgumed. In this limit, one may expand the interaction, termi-
approximation which assumes that at any time the plasmaating at the dipole terms. An examination of this expansion,
particles take on the configuration they would have if thehowever, reveals that not all dipole terms have been retained.
grains were frozen into their instantaneous positigménite  Since the missing terms are long-range terms associated with
grain mass The plasma gas distributes itself so as to shieldhe reduced sound speed, they should be included. More im-
or screen the fields produced by the grain distribution. Thusportantly, the point grain approximation is justified when the
as the grains execute their comparatively sluggish motiormatio of particle size to lattice spacing is small. There is,
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however, an additional independent length parameter in the The system is completely specified with the addition of
system, namely, the ratio of particle size to Debye lengthPoisson’s equation

which is strickly zero in the point grain limit. In recent ex-

periments on the intergrain coupling in dusty plasma Cou- V2®=—47p®—4me(n,—ny,), 2
lomb crystalg 6], this parameter is of order unity and, as will

be shown in this work, has a strong effect on the potentiaivherep®*!is the external charge density which gives rise to
and free energy curves. Additionally, the dipole strength isgext |f the plasma particle average potential energy is much
extremely sensitive to the grain size, a cubic dependence igmajier than the average kinetic energy, we may expand the
grain sizea in presence of an external fiekeh, according o harticle densities to linear order in the total potential. By

- . . _ 3 . . . . . . 3 i . i
the simple approximate expressigp| =a°Eo. Since this is  geparating the individual contributions, one obtains an equa-
one of the parameters defining the phase diagram, in addition

to the lattice spacing and temperature, and since energy dip-On fgr the external potemi'aVZq)ext: ._47796Xt' and an
ferences between different oh ’ I . %quatlon for the plasma particle potential

phases are small, an improve
expression for this interaction is desirable.

A finite grain expression for the dipole interaction energy
should reduce to the point grain expression when the grain | — oy—  — .
size tends to zero, which in turn should reproduce the wel|? this equationk®=4me“(n;+ne)/(kgT) is the square of
known vacuum expression, i.e., the no-screening limit, whein® inverse Debye length. Assumingerall charge neutral-
the Debye length is infinite. The actual “available energy” ity, the constant term in 'ghe latter equation, may be related to
in a system at constant temperature is always a competitioff® 9rain charge. In an impermeable grain model, the mean
between high entropy and low internal energy. ConsePl@sma charge excess is expressed in terms of the total
quently, the effective interaction energy of the system is theharge on all grains bg(n;—ne) = —nyQ/(1—4many/3)
Helmholtz free energy. An analytic expression for the free=—nyQ, with ny denoting the grain density in the plasma
energy is important because it not only gives the effectivegrain mixture. Defining a mean background plasma potential
interaction but also enables the derivation of the completey=4re(n;—n,)/(2k?) and shifting the potential®P= P
thermodynamics of the system. _ ~ — ¢ andd'=PeX— 4 the constant term drops out leaving

In this work the dipole mtgracﬂon_ in a colloidal plasma IS for the plasma potential
calculated. The monopole interaction has been considered
previously and is presented elsewhéid. Section Il de- (V2—Kk2)PP=K2pext (4)
scribes the physical system under consideration and formu-
lates the problem. In the following two sections, the electro-For the volumetric source term on the right-hand side of Eq.
static potential energy and Helmholtz free energy for dipolar4), we shall taked®®*'=—Eyr cos(), representing a uni-
interactions are obtained both for finite as well as pointform external field in théarbitrary) z direction relative to the
grains. The final section presents a discussion of the resultmean background.

It would seem that one must solve an inhomogeneous
linear partial differential equation subject to boundary con-
ditions on the grain surfaces and at infinity. The complete

For the electrostatics dfy grains of radiusa and a vari- ~ solution would then consist of a superposition of the homo-
able chargeQ in a plasma, we treat the plasma medium,geneous and a particular solution. It may be seen though, that
consisting of electrons and singly charged ions in the classidue to the perfect plasma shielding property, only the homo-
cal equilibrium fluid approximation. We consider situations geneous solution survives. Provide#i®*' is such that
where the Debye length is much smaller than the dimension§2®®*'=0, Eq.(4) may be rewritten as
of the system and such that a significant number of plasma
particles collect around each grain. In the neighborhood of a VZ(DP+ DY) —K*(DP+ DY) =0. )
charged grain, the plasma is perturbed. We also consider
situations where the perturbed plasma volume is small iff his condition poses no restriction, however, since @fy'
comparision with the unperturbed plasma resevoir. The eledhay be expanded in the complete set of eigenfunctions of the

tron and ion densities are then distributed according to thé&aplacian operator, namely, in terms of spherical harmonics
Maxwell-Boltzmann relation and powers of, if spherical coordinates are used. By linear-

ity, the solution forNg grains is the superposition dfi,
single grain solution=®P+ =3¢, . For the system
boundary conditions, we require tend to zero infinitely far
away from all grains foany configuration, as well as require
where a bar over particle densities denotes an average, sulbrat, if all grains are infinitely far from each other, the indi-
scriptsi anderefer to ions and electrons respectivadys the  vidual potentials tend to zero at large distances. Under the
absolute value of the elementary charderepresents the specified boundary conditions the individual grain potentials
common electron-ion temperaturkg is Boltzmann's con- are given by the solution to the Helmholtz wave equation

stant andd the total electrostatic potential consisting of the With imaginary wave vectok =ik
plasma particle potential and any externally applied potential N

~ _~ ~ . 3 ! 9
qyzq)r_q_ & In what follows, we shall be_prl_marlly inter- D=DP+ =D
ested in a constant external uniform electric field. =1

(V2—k®)®P= —4me(n,—ng) + k2Pt 3)

II. COLLOIDAL PLASMA SYSTEM

ni(e):Fi(e)eXKI e('i’)/kBT), (1)

ngo Binh{M(kR;)P,(cos®;), (6)
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where and R;,0;) are spherical coordinates relative to the position of that charge due to all other charges
individual grain centerdn(l) is a Hankel function represent-
ing outgoing waves at infinity?, is a Legendre polynomial 1 1
of ordern, and the coefficientB;,, are to be determined from u=: fqu)dVJr 2 JsandA' (D
the boundary condition on the grain surfaces.
Neglecting monopole contributions, the potential on theThe (self-consistent volume charge density is determined
surface of any grain is the dipole potentialEya cosé, of  from Poisson’s equatiom= — 1/(47)V2® = —k?/(4m) D,
the uniform external field, and the surface charge density on the grainsobyZ;
—1/(47)9dIR; evaluated at the grain surfacég=a. For
point grains the delta function dipole sources are volumetric.
The free space equation above is permissible since the back-
ground plasma medium is linear, so tiwaand® are linearly
i=1,...N. (7) related. Denoting the position vectors relative to the grain
centers byR;, the separation vector between two grains
The above linear system of equations may be solved undeind;j is thenR;;=R;—R; . To obtain the electrostatic energy,
varying degrees of approximation. Here we consider indewe integrate over the full space by fixing the orlgln of coor-

N )
—E, cos0); E E Jnh( (kRj)Pn(c0s0)),

pendent grains, i.e., all induced potentials are negligible adlinates on the center of grairand lettingR;=r —r;=R;;p
the location of grain, except the ith potential itself. In this andR;=r—r;=R;; + R,]p The norm of these two vectors is
approximation the total potential is R = R,Jp andR R”|n+p| Ri;u respectively. The vector
ea  (14kR)e R u has the normu=|ﬁ+p|=\/(1+p2+ 2p cosy) with n
i - ; . . . X
E a E0 i 5 , (8) =R;j /R;j a unit vector parallel to the intergrain axis frdim
(1+ka) Rj to (i). The azimuthal dependence of the integrand is no more
R . complicated than a cos or a sin factor. In terms of the new
whereR; - Eo=ECc0s0); is the component oE, in the R;  independent variables andu, the arguments of the expo-
direction. nential functions are simple, enabling an analytic evaluation

It is well known that an alternative to the eigenfunction of the integrals. Additional details regarding the coordinates
technique for solving boundary value problems involvesysed appear in the appendix. The potential energy of a Debye

solving the inhomogeneous equation for homogeneoushielded dipole in the field of a second Debye shielded di-
boundary conditions for a point source at some point insidgyole is found to be
the surface. The solution is then obtained by integrating the

Green'’s function over the space inside and on the surface. In e KRjj . .
the limit of independent charged metallic point grains in a Uf} = ; — [U1{p1-pa+U25p:-Rijp,- Ry,
constant external field, E@5) reduces to 2(ka)*(1+ka)°Rjj 12
(V=KD =472, p-Vo(r—r)). (9 where
I

d
Denoting the distance between the observation pojrand Uljj=a+akR; +(ka)392ka(kRii)2'
the source point’, by R=|r—r’|, the appropriate Green’s q ) 3 oka 3(13)
function for this equation satisfying homogeneous boundary UZ2ij= —3a—3akRj;— B(kR;;)“+ (ka)*e™*(kR;;)”,
conditions G=0) at infinity is G(r,r")=exp(—kR)/R. By
superposition, the total potential is

exp(—kR)) a=[(1+ka)—e??1—ka)][3+3ka+(ka)?],
d=2 p;- R(1+kR)—RZ— (10) (14)
. B=3+6ka+4(ka)2+ (ka)®— e 3—2(ka)?].

with

In obtaining this potential, use has been made of the proper-

ties of thes function and its first derivative. In order that the !N the point grain limita— 0, the electrostatic dipole poten-
independent finite grain solution reduce to the point grairfial energy becomes

solution, we must identifp= —a®E,, asa—0. Point grains

are independent sinadl distances are “far.” This limit is a
special case of the result that the integral of an electric field
over a volume completely enclosing a charge density is equal
to —4mp/3[8]. The vacuum point g[ain limik— 0, reduces +(6+6KR;+ k’R2 k?’RS)pl Rijpy- ﬁij]_ (15)
to the expected expressidn="3;p;- R, /R?.

_kRij

ul=-— e—[(—z—sz +k?R3)
ij R§ P1-P2
i

In the weak screening or vacuum limiit— 0, we recover the

Ill. ELECTROSTATIC POTENTIAL ENERGY well known dipole interaction enerd]
From electrostatics, the electrical interaction energy of a P1-Pa—3p1- ﬁ"pz' 5
system of charged particles can be written as half the sum of Uf’j = L (16)

the product of each charge and the potential of the field at the Risj
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An expression for the dipole electrostatic energy has been 0.02
derived and used to study the phase diagram of dusty plasmi
crystals( [4]). The expression assumed point parallel dipoles
of equal strength. In our notation their result is 0.01

Ul =—pi——|(—1—-1kR;) Uiy o

i
k?RZ _
+| 3+3kR; + 2”)coseﬁ . 0.01 |
/ (a)
The angled;; is the angle between the orientation of the -0.02 L
dipoles and the line between grain centers. When comparec 0 1 2 ‘s 3 4 2
i]

to the above result, this expression neglects long range terms
The expression derived by these authors corresponds to thi
electrostatic dipole energy of a point dipole in presence of a
second Debye shielded point dipole. The missing terms arise
from the energy of the Debye sheath around the first dipole
in presence of the second Debye shielded point dipole. This
additional long range contribution arises naturally if one uses
the self-consistent charge density determined from Poisson:su
equation in the energy equation in analogy with the Thomas-
Fermi statistical model of the atom.

Figure 1 displays the normalizetto py°k®) shielded 0.
dipole—shielded dipole electrostatic potential energy as a
function of free intergrain spacing. Equal strength parallel
dipoles are assumed for illustration purposes. For dipoles  -g.
parallel to the line between centers, Figa)lwith 6;;=0,
and below approximatelka=1, the energy is predomi-
nantly negative but displays overshooting above zero. The 0.
ka=1 case, for example, displays essentially a repulsive
hump with a deep well at very short distances. For higher 0.
values ofka, the energy becomes strictly positive. Fy
=m/2, Fig. 1b), this behavior is reversed. For angles near Ui
/3, in the transition region between predominantly attrac-

i]

tive and predominantly repulsive and for Idva values, a -0.
short range attractive well structure appears which is strongly
repulsive at very small free intergrain separation. This indi- -0.
cates that nearest neighbor dipoles on separate plane

(intergrain axis= /3 with respect to dipole orientatiptend -0.
to seek a stable attractive equilibrium separation. Overshoot-
ing as well as attractive well structures are purely sheath
effects.

-0.

IV. HELMHOLTZ FREE ENERGY FIG. 1. Pair electrosta_tic inter_action _enerlgyj normalized to
k3p(2, as a function of free intergrain spacing; = R;; —2a normal-
In taking the plasma temperature to be a fixed value, weézed toxp=k™* for ka=0,0.5,1,1.5,Xsolid to decreasing dashing
are effectively assuming the background species are in core solid) for (a) 6;;=0, (b) 8;==/2, and(c) 6;;= m/3.
tact with a large resevoir at the plasma temperature, which
remains uniform in space and constant in time. @ailable  of plasma and grains thus conserves total particle number.
work at constant temperatui@ the (Helmholtz free energy  Any volume changes associated with a change of grain con-
thus acts as the effective potential energy for the system. Pdiiguration may be neglected. Under these circumstances, the
of the energy is supplied by a change in the configuraton oHelmholtz free energy may be obtained from the Coulomb
the system and charging and part is supplied by heat thanergy by integrating the thermodynamic relation
flows into the system from the resevoir that maintains thed(F/T)/dT=—U/T2. The constant of integration must be
temperature constant. At thermodynamic equilibrium, thetaken as zero, since whén—«~ we must haved-=F,4, the
free energy takes on a minimum value corresponding to theleal free energy corresponding to the fully non-interacting
stable configuration of the system. or uncorrelated plasmi®]. The deviation from ideality in-
For the calculation of the free energy, we note that thecludes the plasma particle and grain contributions. Only the
plasma particles are of two kinds, mobile particles in thelatter depends on the grain configuration. Expressing the
plasma and immobile particles on grain surfaces. The systememperature in terms of the wave vector, the free energy of
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grain interaction may be obtained from the electrostatic in-The S's are the polynomials iR;; ,a,k,
teraction energy from

' k — 3 4 2 3 2,4
kzFij_kizszjdzzf Uij(k’)k’dk'. (17) S;=—12a°—-20ka*+12a Rij+26ka Rij—2k a Rij
0

—3aR’ —1%a’R} — 2k%a’R} + 2k*a*Rf, + k?a’R}
Proceeding as before on finds the rather complicated analyti-

cal result —k%a®R} +kR]},
Fij = (F1j—F 1)y po+ (F2— F2{)py Rip2 Ry o
(18) S,=9a%-9a’R;; +3aR; + R},
where
. 3+ka S e2ka kR S;=9+4ka+2kR;; +k?aR;; (21)
P R e ka*(1+ka)(2a—R;;)?R3
1] 1] 1
S,e 2tRj/a S,= —72a°—12(ka’+ 108a’R;; + 216ka°R;; — 1%*a°R;
E;((1+ka)(2a—R;;)/a)
a’R} ! —54a°R? — 166ka’R? + 4k?a°R? +9a?R? + 78ka’R}
efi’d(a—Ry) +11k%a’R} - 8k%a°R}} + 4k*a’R} — 16a%kRY]
—— 5 Ei(-(1+ka)R;/a), (19)
&R} —6k?a’R} + 6k%a’R! — 4k*a°RY — 2kaR] + k?a’R])
and —K%a®RS +k*a*RS + kRS,
p SgeileJ S4ezka*kR|J
! ka®R}  ka’(1+ka)(2a—R;)°R} Ss=27a*~27a°R; + 12a?R} — 3aR} — R,
85672+Rij la
+ TE,((1+ ka)(2a— Rij)/a)
a’Rj; Ss=3a’—3aR; +R].
SGeRIJ la
- — 3 E(=(1+ka)R;;/a). (20 o . .
a“Rij The lower limit of integrationk=0 contributes
J
L00_ a[T,ae?+ Tra%e? RiBE (—R;; /a) — T4 2E;(2—R; /a) ]
b (—2a+R;j)%a%’R] ’
(22
quO:[T4ae2—T5a2e2+RiJ l3E(—Rjj/a)+ TeeRiPE(2—R;; /a)]
. (2a—R;j)%a’e’R} '
where
T,=28a*-34a°R;; + 15a°R} — R} ,
T,=(a—Rj)(—2a+R;)?
T3: ( - 2a+ le )2(9a3_ 9a2Rij + 3aRﬁ + Rﬁ),
(23

T,4=—160a°+2922°R;; — 220a*R? + 95a°R? — 18a°R{ — 2aR’ + R},
Ts=(2a—R;;)%(3a’~3aR; +R}),
Te=(2a—R;)%(27a* - 27a°R;; + 12a°R], — 3aR} —R})).

For the point grain limit we find
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K= (1+KR;)p1-Py) +(3+3kR; +K°R7)p-Rijpz- Rjj

(24)

e RiR}

The weak screening limit result is identical to the one ob-proper account of the boundary conditions on spherical

tained for the electrostatic energy, as expected,

_ pl'p2_3pl'ﬁijp2'ﬁij

F
S

Despite the complexity of the free energy expression for fi-
nite grains, it does not include the finite volume correction
arising from the impenetrability of the grains. The correction
is small for smalka values. It has, however, been calculated
and appears in the Appendix. All figures shown in this work
include this correction.

Figure 2 shows the Helmholtz free energy. Fgy=0
(and 7/2). Some overshooting still occurs particularly for
large ka values. The attractive well found before fax;
=7/3 persists with the equilibrium separation shifting to
lower distances. The depth of the well has decreased by
roughly a factor of 5, however. For finite temperature sys-
tems the free energy is the more relevant quantity to calcu-
late as it determines the effective available energy in the
system to do work.

V. DISCUSSION

In this work the Debye-shielded dipole-dipole interaction
for finite polarized grains in a plasma has been calculated.
The mechanism for grain polarization has not been consid-
ered; it could arise due to the presence of an external field,
finite ion flows, as well as a plasma inhomogeneity. For the
system ofNg grains only the simplest boundary condition,
namely independent grains, has been used. This approxima
tion allows the total potential foN, grains to be obtained
from a simple superposition of single grain solutions where
the single grain potential is determined from the Poisson
equation for one grain together with the corresponding single
grain boundary conditions. Despite this, the finite grain ex-
pressions are fairly complex. One could go beyond indepen-
dent grains and consider more complex boundary conditions,

taking into account the induced fields of all grains on the F ;4

surface of each grain. The resulting expressions would then
carry information concerning the configuration of all grains
and show great complexity. Mathematically, this would be
treated by solving a linear system of; equations. One
should be aware, however, that even the potential fails to
possess a closed form solution, being expressible as an infi-
nite series only. Another approximation made in this work is
the plasma approximation in which the produet is small,

grains, to leading order the potential goes ke with addi-
tional terms proportional tok@)? [10]. It is becoming in-
creasingly recognized that in order to understand plasma
crystal structures both monopole and dipole interactions

(25) must be taken into account.

0.02

-0.01

-0.02

()

so that a large number of plasma particles participate in the FiG. 2. Pair Helmholtz interaction enerdy; normalized to
shielding of each grain. While the size of the errors incurredk®p? as a function of free intergrain spacir; = R;; — 2a normal-

by this approximation have not been calculated for the dipolézed toxp =k * for ka=0,0,5,1,1.5,2solid to decreasing dashing

interaction, it is known that in the monopole case, with

to solid for (@) 6;;=0, (b) 6;j=/2, and(c) 6;;= /3.
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ThUS, Ri: R”p and Rj: Riju, where U:|ﬁ+p| :(1+p2
+2pcos®)¥? with n=R;;/R;=z Finally we let x
=cosé . Then asx varies between-1 and +1, u varies
between|1—p| and |1+ p|. In terms of the new variables,
the volume integration over an¥/ (p,u, ¢;) expressed in the
new independent variables, becomes

5 3 % [1+p] 2m
f d r\I’—>Rijf pdpf| uduf do; ¥
0

1-p| 0

1 1+p
=Ri3]- fpdpf udu
0 1-p
o 1+p
+f pdpf udu
1 p—1

The arguments of the exponentials are particularly simple,
enabling an analytic evaluation in terms pfand u. The
resulting integrand im, after theu and ¢; integrations have

Twdg. (A3
0

FIG. 3. CAPTION been carried out, has a finite discontinuitypat 1; the inte-
gral converges, however.
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whereP,,(x) is a polynomial inx of degreem andP®(x) is
APPENDIX the kth derivative ofP,(x) with respect tax. For the Helm-

In this appendix we present the evaluation details of thd'0ltz free energy one simply integrates the electrostatic en-
electrostatic energyEq. (11)] and free energyEq. (17)]. ergy WED respect tk. In this integration, mt_egrals _of the
The volume correction to these energies arising from finitdYP€ J€*/xdx=E;(ax) are encountered. While straightfor-
impenetrable grains is also given. ward to e_valuate, these mtegr_als can become very tedious.

For the full space integration appearing in Ebl) we use Note Fhat in the volume correction to the eIeptrostaUc energy
the coordinates displayed in the following diagréfig. 3.  thep integration ranges from O @/R;; and since the upper
The origin is first shifted to the center of grainassumed liMitis always less than 1, only the first integral in EA3)
spherical. Relative to grain the position of grainj is R, ~ contributes. For two grains the volume correctiminus
=R;;+R;. A right handed Cartesian system centered orsi9" displayed explicitlyto be added to Eq12) is
graini is chosen with the axis parallel to the line joining
grain centers in the direction frojrto i. With respect to this  UF°)
system

pi- Ri= pixR; sin 6; cos; + p;,R; sin 6; sin ¢; - Y[ (1+KR;)p;-pj— (3+3kR; +K2R))p;i- Rijp; - Ryj ]
2kad®Ri(1+ka)’R}

+p;;R; cosé;,
(A1) (A4)

+Ri=p:-Rii +piyRi sin6; cosg; + p;,R; sin b, sin ¢,
pj j p] ij pJXI i (r{)l p]yl i ¢| where

+ p;;R; cosé; .
_ . . _ y=—2+2e?a—ka— 3kae? 3+ 2k%a2e? 2,
In this equationR;, 6;, and ¢; are spherical polar coordi-
nates relative to the center of grdinWe next transform to

new independent variables u defined by Similarly, the volume correction to the Helmholtz free en-

ergy is

=R =pR. . .
Ri= Ry Rij=pRij, Fidj(vol): Flﬂ_(vol)pl_ o+ szjj(vol)pl_ Rjpz-Rij. (AS)
(A2)

Rj:R|]+R|Jp where
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—2a+R” n _Za_ka2+Rij ek(za_Rij)
a’R}  a’eRi(1+kaR} a’(1+ka)(2a—R;)*R}

F1vo=— [—28aR;+ 7R} +4a’k(1+kR;)

24a°-38a%R;; +28aR] — 7R
a’(2a—R;)°R}

+a’R;;(38+5kR;j) —2a%(12+ 7kR;; + k?R) | —

(1+ka)(2a—Ry;) (1+ka)(2a—Ry)

7e” 2" Rild(a—2R)E;

) 7672+ Rij/a(a_ R”)(Za_ R”)El

+ a a
a’R} a’R?
Ri; (1+ka)R;;
eRii/a(az—aRij+Rﬁ)Ei<—§) eRu/a(az—anj+Rﬁ)Ei(—T”
- a'R} I a’R}
—2+R;i/ Rij -2+ Ry;/ Rij
Te 1] a(a_ZRij)Ei 2— ? Te 1 a(a_ Rij)(Za— R”)E| 2_?
- + (A6)
a’R} a'R}
and
2 2 5 4 3p2 2p3 5
e pdtvol _ 7a?-3aR;+R} —1442°+300a°R;; — 264a°R’ + 147a°R} — 4%R} + 7R}
I
J a*R? a*(2a—R;j)°R}
—3aR;+R3+ka’(4+kRj)+a%(7+kR;) ek(2a=Ry)
+ — — — 5 (—4%R} + 7R} + 7a’R} (21+ kR;))
a*e*Ri(1+ka)R} a*(1+ka)(2a—Ryj)°R}

+8ka®(3+ 3kR; +k?R%) — a®Rf (264+ 46k R + 5k?R})) + 2a*R;; (150+ 55kR;j + 15k*R] + k°R?)

1+ka)(2a—R;;
21e—2+ Rij/a(a_Rij)ZEi ( )( 'J)

—4a°(36+ 24KR;; + 13k°R] + 2k°R})) — i 2
a"Ry;
7e 2*Rila(2a—R;)(3a2—3aR; +R})E, (1+ka)(aza_R”))
! a°R
eRii’a(—3a3+3a2Rij—2aR,-2j+Rf})Ei(—% eR”""‘(—3a3+3a2Rij—2aRﬁ+R?j)Ei(—@
- a°R} ! a°R]

Rii Rij R
21e 2" Rij/a(a— Rij)in(Z— f) 7e %" a(2a—R;;)(3a?—3aR; +R§)Ei( - f)

i a'R} a°R? (A7)
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