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Dipolar interaction in a colloidal plasma

D. P. Resendes
Centro de Fı´sica de Plasmas, Instituto Superior Te´cnico, 1096 Lisboa Codex, Portugal

~Received 30 April 1999!

The dipole-dipole interaction between macroscopic grains in a plasma is calculated. The presence of a
plasma medium shields the Coulomb grain interactions as well as necessitates that nonzero temperature effects
be accounted for. The resulting electrostatic but not so much the Helmholtz free energy shows overshooting
when equal strength parallel dipoles align with or are perpendicular to the line joining their centers. More
striking is the appearance of a short range attractive well interaction for angles nearp/3. The contribution of
the dipole-dipole to the total interaction in so-called plasma crystals has become increasingly recognized.

PACS number~s!: 52.25.Zb, 36.90.1f
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I. INTRODUCTION

Micron size dust particles, or grains charged by plas
have been observed to form crystalline phases as we
isolated and agglomerated pairs in low temperature plas
@1,2#. Such grains are common contaminants in low press
~100’s mtorr!, partially ionized ~ion density 109<ni
<1011 cm23) plasma processing rf electrical glow di
charges. The grains charge negatively and particles mic
in size ~radius fraction mm<a<100 mm) can have up to
tens of thousands of elementary charges, 103–105 electron
charges according to various estimates. The negative ch
balances the flux of electrons and ions to the grain surf
generating floating potentials of (1.5–3)Te , the electron
temperature being in the range~2–5! eV. In plasma cham-
bers these structures are found at the edge of the pla
above a negative dc self-biased electrode where an ele
field exists. The field balances ion drag and gravitatio
forces thus keeping the grains afloat. In this region
plasma temperature and Debye length are characterize
the electron values, withlDe.431022 cm. These struc-
tures should also form in the bulk plasma which is char
terized by zero electric field, the ion temperature and the
Debye lengthlDi.531023 cm. In plasma crystals the
grain density is of the orderng.104 cm23 while the grain
and ion temperatures are approximately room temperat
Tg<Ti.300 K. A simple estimate shows that since gra
densities are!106 cm23 in the lattice, they can be treate
as distinct entities.

The assembly of a colloidal plasma crystal is viewed h
as starting from a configuration with each grain initially u
charged and infinitely separated in a neutral plasma ba
ground of mobile singly charged ions and electrons. T
grains are treated as ‘‘external’’ to the plasma gas, no
additional constituents of the screening medium. Due to
difference between ion and electron mobilities, the gra
become charged, typically in a fraction of a second. T
response of the plasma particles is treated in the adiab
approximation which assumes that at any time the plas
particles take on the configuration they would have if t
grains were frozen into their instantaneous positions~infinite
grain mass!. The plasma gas distributes itself so as to shi
or screen the fields produced by the grain distribution. Th
as the grains execute their comparatively sluggish mot
PRE 611063-651X/2000/61~1!/793~8!/$15.00
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the nimble plasma particles are continually redistributi
themselves so as to cancel out the long range part of
grain field, yielding an effective grain field that is sho
ranged.

The final lattice configuration is obtained by allowing th
grains to slowly and isothermally approach each other wh
maintaining the volume of the system constant. At these
temperatures the energy, both potential and kinetic, of
background plasma is comparable to the energy of
grains, and must be taken into account in discussing the
bility of lattices. By fixing the plasma temperatureT, the
Helmholtz free energy acts as the ‘‘effective potential e
ergy’’ for the system.

The importance of the dipole interaction in these stru
tures has become increasingly recognized@3#. Under some
conditions, deformed and oriented three dimensional cl
packed lattices of bcc, fcc, or hcp type, but mostly triangu
arrays of vertical chains of grains are seen.These unu
phases have recently been explained as due to dipole-d
interactions. Detailed lattice structures and highly comp
phase diagrams have been calculated based on this int
tion @4#. At low dipole strengths, the dipole interaction
manifest in the preferred orientation of the cubic lattices.
intermediate strengths, the triangular and hcp lattices be
to coexist with the preferred cubic lattices. At still high
strengths, the triangular array of vertical chains is preferr
The stability of these lattices against excitations, nam
compression and vibration, has also been investigated. O
studies, using the same dipole interaction, have addre
waves in dusty plasma crystals@5#. The effective two-
particle interaction has been incorporated into a lattice w
dispersion relation. Compared to the zero dipole case,
sound speed is reduced from that of a lattice with pur
monopole interactions. The reduction is attributed to a lo
range dipole contribution which arises as a result of plas
screening.

In these studies, point grains of equal size have been
sumed. In this limit, one may expand the interaction, term
nating at the dipole terms. An examination of this expansi
however, reveals that not all dipole terms have been retai
Since the missing terms are long-range terms associated
the reduced sound speed, they should be included. More
portantly, the point grain approximation is justified when t
ratio of particle size to lattice spacing is small. There
793 ©2000 The American Physical Society
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794 PRE 61D. P. RESENDES
however, an additional independent length parameter in
system, namely, the ratio of particle size to Debye len
which is strickly zero in the point grain limit. In recent ex
periments on the intergrain coupling in dusty plasma C
lomb crystals@6#, this parameter is of order unity and, as w
be shown in this work, has a strong effect on the poten
and free energy curves. Additionally, the dipole strength
extremely sensitive to the grain size, a cubic dependenc
grain sizea in presence of an external fieldE0, according to
the simple approximate expression,upu5a3E0. Since this is
one of the parameters defining the phase diagram, in add
to the lattice spacing and temperature, and since energy
ferences between different phases are small, an impro
expression for this interaction is desirable.

A finite grain expression for the dipole interaction ener
should reduce to the point grain expression when the g
size tends to zero, which in turn should reproduce the w
known vacuum expression, i.e., the no-screening limit, wh
the Debye length is infinite. The actual ‘‘available energ
in a system at constant temperature is always a compet
between high entropy and low internal energy. Con
quently, the effective interaction energy of the system is
Helmholtz free energy. An analytic expression for the fr
energy is important because it not only gives the effect
interaction but also enables the derivation of the comp
thermodynamics of the system.

In this work the dipole interaction in a colloidal plasma
calculated. The monopole interaction has been consid
previously and is presented elsewhere@7#. Section II de-
scribes the physical system under consideration and for
lates the problem. In the following two sections, the elect
static potential energy and Helmholtz free energy for dipo
interactions are obtained both for finite as well as po
grains. The final section presents a discussion of the res

II. COLLOIDAL PLASMA SYSTEM

For the electrostatics ofNg grains of radiusa and a vari-
able chargeQ in a plasma, we treat the plasma mediu
consisting of electrons and singly charged ions in the cla
cal equilibrium fluid approximation. We consider situatio
where the Debye length is much smaller than the dimens
of the system and such that a significant number of plas
particles collect around each grain. In the neighborhood
charged grain, the plasma is perturbed. We also cons
situations where the perturbed plasma volume is smal
comparision with the unperturbed plasma resevoir. The e
tron and ion densities are then distributed according to
Maxwell-Boltzmann relation

ni (e)5n̄i (e)exp~7eF̃/kBT!, ~1!

where a bar over particle densities denotes an average,
scriptsi ande refer to ions and electrons respectively,e is the
absolute value of the elementary charge,T represents the
common electron-ion temperature,kB is Boltzmann’s con-
stant andF̃ the total electrostatic potential consisting of t
plasma particle potential and any externally applied poten
F̃5F̃p1F̃ext. In what follows, we shall be primarily inter
ested in a constant external uniform electric field.
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The system is completely specified with the addition
Poisson’s equation

¹2F̃524pr̃ext24pe~ni2ne!, ~2!

wherer̃ext is the external charge density which gives rise
F̃ext. If the plasma particle average potential energy is mu
smaller than the average kinetic energy, we may expand
particle densities to linear order in the total potential. B
separating the individual contributions, one obtains an eq
tion for the external potential¹2F̃ext524pr̃ext, and an
equation for the plasma particle potential

~¹22k2!F̃p524pe~ n̄i2n̄e!1k2F̃ext. ~3!

In this equationk254pe2(n̄i1n̄e)/(kBT) is the square of
the inverse Debye length. Assumingoverall charge neutral-
ity, the constant term in the latter equation, may be relate
the grain charge. In an impermeable grain model, the m
plasma charge excess is expressed in terms of the
charge on all grains bye(n̄i2n̄e)52ngQ/(124pa3ng/3)
.2ngQ, with ng denoting the grain density in the plasm
grain mixture. Defining a mean background plasma poten
f̄[4pe(n̄i2n̄e)/(2k2) and shifting the potentialsFp5F̃p

2f̄ andFext5F̃ext2f̄, the constant term drops out leavin
for the plasma potential

~¹22k2!Fp5k2Fext. ~4!

For the volumetric source term on the right-hand side of E
~4!, we shall takeFext52E0r cos(u), representing a uni-
form external field in the~arbitrary! z direction relative to the
mean background.

It would seem that one must solve an inhomogene
linear partial differential equation subject to boundary co
ditions on the grain surfaces and at infinity. The compl
solution would then consist of a superposition of the hom
geneous and a particular solution. It may be seen though,
due to the perfect plasma shielding property, only the hom
geneous solution survives. ProvidedFext is such that
¹2Fext50, Eq. ~4! may be rewritten as

¹2~Fp1Fext!2k2~Fp1Fext!50. ~5!

This condition poses no restriction, however, since anyFext

may be expanded in the complete set of eigenfunctions of
Laplacian operator, namely, in terms of spherical harmon
and powers ofr, if spherical coordinates are used. By linea
ity, the solution forNg grains is the superposition ofNg
single grain solutionsF5Fp1Fext5( jf j . For the system
boundary conditions, we requireF tend to zero infinitely far
away from all grains foranyconfiguration, as well as requir
that, if all grains are infinitely far from each other, the ind
vidual potentials tend to zero at large distances. Under
specified boundary conditions the individual grain potenti
are given by the solution to the Helmholtz wave equat
with imaginary wave vectork5 ik

F5Fp1Fext5(
j 51

Ng

(
n50

`

Bjnhn
(1)~kRj !Pn~cosQ j !, ~6!
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PRE 61 795DIPOLAR INTERACTIONS IN A COLLOIDAL PLASMA
where and (Rj ,Q j ) are spherical coordinates relative to t
individual grain centers,hn

(1) is a Hankel function represen
ing outgoing waves at infinity,Pn is a Legendre polynomia
of ordern, and the coefficientsBjn are to be determined from
the boundary condition on the grain surfaces.

Neglecting monopole contributions, the potential on t
surface of any grain is the dipole potential,2E0a cosu, of
the uniform external field,

2E0 cosQ i5(
j 51

N

(
n50

`

Bjnhn
(1)~kRj !Pn~cosQ j !,

i 51, . . . ,N. ~7!

The above linear system of equations may be solved un
varying degrees of approximation. Here we consider in
pendent grains, i.e., all induced potentials are negligible
the location of graini, except the ith potential itself. In thi
approximation the total potential is

F52(
j 51

Ng

a3E0•R̂j

eka

~11ka!

~11kRj !e
2kRj

Rj
2

, ~8!

where R̂j•E05E0cosQj is the component ofE0 in the R̂j
direction.

It is well known that an alternative to the eigenfunctio
technique for solving boundary value problems involv
solving the inhomogeneous equation for homogene
boundary conditions for a point source at some point ins
the surface. The solution is then obtained by integrating
Green’s function over the space inside and on the surface
the limit of independent charged metallic point grains in
constant external field, Eq.~5! reduces to

~¹22k2!F54p(
i

p•¹d~r2r i !. ~9!

Denoting the distance between the observation point,r , and
the source point,r 8, by R[ur2r 8u, the appropriate Green’
function for this equation satisfying homogeneous bound
conditions (G50) at infinity is G(r ,r 8)5exp(2kR)/R. By
superposition, the total potential is

F5(
j

pj•R̂j~11kRj !
exp~2kRj !

Rj
2 . ~10!

In obtaining this potential, use has been made of the pro
ties of thed function and its first derivative. In order that th
independent finite grain solution reduce to the point gr
solution, we must identifyp52a3E0, asa→0. Point grains
are independent sinceall distances are ‘‘far.’’ This limit is a
special case of the result that the integral of an electric fi
over a volume completely enclosing a charge density is eq
to 24pp/3 @8#. The vacuum point grain limit,k→0, reduces
to the expected expressionF5( ipi•R̂i /Ri

2 .

III. ELECTROSTATIC POTENTIAL ENERGY

From electrostatics, the electrical interaction energy o
system of charged particles can be written as half the sum
the product of each charge and the potential of the field at
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position of that charge due to all other charges

U5 1
2 E

V
rFdV1 1

2 E
S
sFdA. ~11!

The ~self-consistent! volume charge density is determine
from Poisson’s equationr521/(4p)¹2F52k2/(4p)F,
and the surface charge density on the grains bys5( i
21/(4p)]F]Ri evaluated at the grain surfaces,Ri5a. For
point grains the delta function dipole sources are volumet
The free space equation above is permissible since the b
ground plasma medium is linear, so thatr andF are linearly
related. Denoting the position vectors relative to the gr
centers byRi , the separation vector between two grainsi
andj is thenRi j 5Ri2Rj . To obtain the electrostatic energ
we integrate over the full space by fixing the origin of coo
dinates on the center of graini and lettingRi[r2r i5Ri j r
andRj[r2r j5Ri j 1Ri j r. The norm of these two vectors i
Ri5Ri j r and Rj5Ri j un̂1ru5Ri j u respectively. The vector
u has the normu5un̂1ru5A(11r212r cosg) with n̂
5Ri j /Ri j a unit vector parallel to the intergrain axis from~j!
to (i ). The azimuthal dependence of the integrand is no m
complicated than a cos or a sin factor. In terms of the n
independent variablesr and u, the arguments of the expo
nential functions are simple, enabling an analytic evaluat
of the integrals. Additional details regarding the coordina
used appear in the appendix. The potential energy of a De
shielded dipole in the field of a second Debye shielded
pole is found to be

Ui j
d 5

e2kRi j

2~ka!3~11ka!2Ri j
3 @U1i j

d p1•p21U2i j
d p1•R̂i j p2•R̂i j #,

~12!

where

U1i j
d 5a1akRi j 1~ka!3e2ka~kRi j !

2,
~13!

U2i j
d 523a23akRi j 2b~kRi j !

21~ka!3e2ka~kRi j !
3,

with

a5@~11ka!2e2ka~12ka!#@313ka1~ka!2#,
~14!

b5316ka14~ka!21~ka!32e2ka@322~ka!2#.

In the point grain limit,a→0, the electrostatic dipole poten
tial energy becomes

Ui j
d 52

e2kRi j

2Ri j
3 @~2222kRi j 1k2Ri j

2 !p1•p2

1~616kRi j 1k2Ri j
2 2k3Ri j

3 !p1•R̂i j p2•R̂i j #. ~15!

In the weak screening or vacuum limit,k→0, we recover the
well known dipole interaction energy@8#

Ui j
d 5

p1•p223p1•R̂i j p2•R̂i j

Ri j
3

. ~16!
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796 PRE 61D. P. RESENDES
An expression for the dipole electrostatic energy has b
derived and used to study the phase diagram of dusty pla
crystals~ @4#!. The expression assumed point parallel dipo
of equal strength. In our notation their result is

Ui j
d 52p0

2 e2kRi j

Ri j
3 F ~2121kRi j !

1S 313kRi j 1
k2Ri j

2

2 D cosu i j
2 G .

The angleu i j is the angle between the orientation of t
dipoles and the line between grain centers. When comp
to the above result, this expression neglects long range te
The expression derived by these authors corresponds to
electrostatic dipole energy of a point dipole in presence o
second Debye shielded point dipole. The missing terms a
from the energy of the Debye sheath around the first dip
in presence of the second Debye shielded point dipole. T
additional long range contribution arises naturally if one u
the self-consistent charge density determined from Poiss
equation in the energy equation in analogy with the Thom
Fermi statistical model of the atom.

Figure 1 displays the normalized~to p0
2k3) shielded

dipole–shielded dipole electrostatic potential energy a
function of free intergrain spacing. Equal strength para
dipoles are assumed for illustration purposes. For dipo
parallel to the line between centers, Fig. 1~a! with u i j 50,
and below approximatelyka51, the energy is predomi
nantly negative but displays overshooting above zero.
ka51 case, for example, displays essentially a repuls
hump with a deep well at very short distances. For hig
values ofka, the energy becomes strictly positive. Foru i j
5p/2, Fig. 1~b!, this behavior is reversed. For angles ne
p/3, in the transition region between predominantly attr
tive and predominantly repulsive and for lowka values, a
short range attractive well structure appears which is stron
repulsive at very small free intergrain separation. This in
cates that nearest neighbor dipoles on separate pl
~intergrain axis.p/3 with respect to dipole orientation! tend
to seek a stable attractive equilibrium separation. Oversh
ing as well as attractive well structures are purely she
effects.

IV. HELMHOLTZ FREE ENERGY

In taking the plasma temperature to be a fixed value,
are effectively assuming the background species are in
tact with a large resevoir at the plasma temperature, wh
remains uniform in space and constant in time. Theavailable
work at constant temperatureor the~Helmholtz! free energy
thus acts as the effective potential energy for the system.
of the energy is supplied by a change in the configuraton
the system and charging and part is supplied by heat
flows into the system from the resevoir that maintains
temperature constant. At thermodynamic equilibrium,
free energy takes on a minimum value corresponding to
stable configuration of the system.

For the calculation of the free energy, we note that
plasma particles are of two kinds, mobile particles in t
plasma and immobile particles on grain surfaces. The sys
n
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of plasma and grains thus conserves total particle num
Any volume changes associated with a change of grain c
figuration may be neglected. Under these circumstances
Helmholtz free energy may be obtained from the Coulo
energy by integrating the thermodynamic relati
](F/T)/]T52U/T2. The constant of integration must b
taken as zero, since whenT→` we must haveF5Fid , the
ideal free energy corresponding to the fully non-interact
or uncorrelated plasma@9#. The deviation from ideality in-
cludes the plasma particle and grain contributions. Only
latter depends on the grain configuration. Expressing
temperature in terms of the wave vector, the free energy

FIG. 1. Pair electrostatic interaction energyUi j normalized to
k3p0

2 as a function of free intergrain spacing,Xi j 5Ri j 22a normal-
ized tolD5k21 for ka50,0.5,1,1.5,2~solid to decreasing dashin
to solid! for ~a! u i j 50, ~b! u i j 5p/2, and~c! u i j 5p/3.
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grain interaction may be obtained from the electrostatic
teraction energy from

k2Fi j 2kid
2 Fi j

id52E
0

k

Ui j ~k8!k8dk8. ~17!

Proceeding as before on finds the rather complicated ana
cal result

Fi j
d 5~F1i j

d 2F1i j
d0!p1•p21~F2i j

d 2F2i j
d0!p1•R̂i j p2•R̂i j ,

~18!

where

F1i j
d 52

31ka

ka3Ri j
3 ekRi j

2
S1e2ka2kRi j

ka4~11ka!~2a2Ri j !
2Ri j

3

2
S2e221Ri j /a

a5Ri j
3

Ei„~11ka!~2a2Ri j !/a…

1
eRi j /a~a2Ri j !

a3Ri j
3

Ei„2~11ka!Ri j /a…, ~19!

and

F2i j
d 5

S3e2kRi j

ka3Ri j
3

1
S4e2ka2kRi j

ka5~11ka!~2a2Ri j !
3Ri j

3

1
S5e221Ri j /a

a6Ri j
3

Ei„~11ka!~2a2Ri j !/a…

2
S6eRi j /a

a4Ri j
3

Ei„2~11ka!Ri j /a…. ~20!
-

ti-

The S8s are the polynomials inRi j ,a,k,

S15212a3220ka4112a2Ri j 126ka3Ri j 22k2a4Ri j

23aRi j
2 213ka2Ri j

2 22k2a3Ri j
2 12k3a4Ri j

2 1k2a2Ri j
3

2k3a3Ri j
3 1kRi j

4 ,

S259a329a2Ri j 13aRi j
2 1Ri j

3 ,

S35914ka12kRi j 1k2aRi j , ~21!

S45272a52120ka61108a4Ri j 1216ka5Ri j 212k2a6Ri j

254a3Ri j
2 2166ka4Ri j

2 14k2a5Ri j
2 19a2Ri j

3 178ka3Ri j
3

111k2a4Ri j
3 28k3a5Ri j

3 14k4a6Ri j
3 216a2kRi j

4

26k2a3Ri j
4 16k3a4Ri j

4 24k4a5Ri j
4 22kaRi j

5 1k2a2Ri j
5

2k3a3Ri j
5 1k4a4Ri j

5 1kRi j
6 ,

S5527a4227a3Ri j 112a2Ri j
2 23aRi j

3 2Ri j
4 ,

S653a223aRi j 1Ri j
2 .

The lower limit of integration,k50 contributes
F1i j
d05

a@T1ae21T2a2e21Ri j /aEi~2Ri j /a!2T3eRi j /aEi~22Ri j /a!#

~22a1Ri j !
2a6e2Ri j

3
,

~22!

F2i j
d05

@T4ae22T5a2e21Ri j /aEi~2Ri j /a!1T6eRi j /aEi~22Ri j /a!#

~2a2Ri j !
3a6e2Ri j

3
,

where

T1528a4234a3Ri j 115a2Ri j
2 2Ri j

4 ,

T25~a2Ri j !~22a1Ri j !
2,

T35~22a1Ri j !
2~9a329a2Ri j 13aRi j

2 1Ri j
3 !,

~23!
T452160a61292a5Ri j 2220a4Ri j

2 195a3Ri j
3 218a2Ri j

4 22aRi j
5 1Ri j

6 ,

T55~2a2Ri j !
3~3a223aRi j 1Ri j

2 !,

T65~2a2Ri j !
3~27a4227a3Ri j 112a2Ri j

2 23aRi j
3 2Ri j

4 !.

For the point grain limit we find
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F52
k2~2~11kRi j !p1•p2!1~313kRi j 1k2Ri j

2 !p1•R̂i j p2•R̂i j

ekRi j Ri j
3

. ~24!
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The weak screening limit result is identical to the one o
tained for the electrostatic energy, as expected,

F5
p1•p223p1•R̂i j p2•R̂i j

Ri j
3

. ~25!

Despite the complexity of the free energy expression for
nite grains, it does not include the finite volume correcti
arising from the impenetrability of the grains. The correcti
is small for smallka values. It has, however, been calculat
and appears in the Appendix. All figures shown in this wo
include this correction.

Figure 2 shows the Helmholtz free energy. Foru i j 50
~and p/2). Some overshooting still occurs particularly f
large ka values. The attractive well found before foru i j
5p/3 persists with the equilibrium separation shifting
lower distances. The depth of the well has decreased
roughly a factor of 5, however. For finite temperature s
tems the free energy is the more relevant quantity to ca
late as it determines the effective available energy in
system to do work.

V. DISCUSSION

In this work the Debye-shielded dipole-dipole interacti
for finite polarized grains in a plasma has been calcula
The mechanism for grain polarization has not been con
ered; it could arise due to the presence of an external fi
finite ion flows, as well as a plasma inhomogeneity. For
system ofNg grains only the simplest boundary conditio
namely independent grains, has been used. This approx
tion allows the total potential forNg grains to be obtained
from a simple superposition of single grain solutions wh
the single grain potential is determined from the Poiss
equation for one grain together with the corresponding sin
grain boundary conditions. Despite this, the finite grain
pressions are fairly complex. One could go beyond indep
dent grains and consider more complex boundary conditio
taking into account the induced fields of all grains on t
surface of each grain. The resulting expressions would t
carry information concerning the configuration of all grai
and show great complexity. Mathematically, this would
treated by solving a linear system ofNg equations. One
should be aware, however, that even the potential fails
possess a closed form solution, being expressible as an
nite series only. Another approximation made in this work
the plasma approximation in which the productka is small,
so that a large number of plasma particles participate in
shielding of each grain. While the size of the errors incur
by this approximation have not been calculated for the dip
interaction, it is known that in the monopole case, w
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proper account of the boundary conditions on spher
grains, to leading order the potential goes likeka with addi-
tional terms proportional to (ka)2 @10#. It is becoming in-
creasingly recognized that in order to understand plas
crystal structures both monopole and dipole interactio
must be taken into account.

FIG. 2. Pair Helmholtz interaction energyFi j normalized to
k3p0

2 as a function of free intergrain spacing,Xi j 5Ri j 22a normal-
ized tolD5k21 for ka50,0,5,1,1.5,2~solid to decreasing dashin
to solid! for ~a! u i j 50, ~b! u i j 5p/2, and~c! u i j 5p/3.
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APPENDIX

In this appendix we present the evaluation details of
electrostatic energy@Eq. ~11!# and free energy@Eq. ~17!#.
The volume correction to these energies arising from fin
impenetrable grains is also given.

For the full space integration appearing in Eq.~11! we use
the coordinates displayed in the following diagram~Fig. 3!.
The origin is first shifted to the center of graini, assumed
spherical. Relative to graini the position of grainj is Rj
5Ri j 1Ri . A right handed Cartesian system centered
grain i is chosen with thez axis parallel to the line joining
grain centers in the direction fromj to i. With respect to this
system

pi•Ri5pixRi sinu i cosf i1piyRi sinu i sinf i

1pizRi cosu i ,
~A1!

pj•Rj5pj•Ri j 1pjxRi sinu i cosf i1pjyRi sinu i sinf i

1pjzRi cosu i .

In this equationRi , u i , and f i are spherical polar coordi
nates relative to the center of graini. We next transform to
new independent variablesr, u defined by

Ri5
Ri

Ri j
Ri j [rRi j ,

~A2!
Rj5Ri j 1Ri j r.

FIG. 3. CAPTION
ed
k
h

e

e

n

Thus, Ri5Ri j r and Rj5Ri j u, where u5un̂1ru5(11r2

12r cosui)
1/2 with n̂5Ri j /Ri j 5 ẑ. Finally we let x

5cosui . Then asx varies between21 and 11, u varies
betweenu12ru and u11ru. In terms of the new variables
the volume integration over anyC(r,u,f i) expressed in the
new independent variables, becomes

E d3rC→Ri j
3 E

0

`

rdrE
u12ru

u11ru
uduE

0

2p

df iC

5Ri j
3 S E

0

1

rdrE
12r

11r

udu

1E
1

`

rdrE
r21

11r

uduD E
0

2p

Cdf i . ~A3!

The arguments of the exponentials are particularly simp
enabling an analytic evaluation in terms ofr and u. The
resulting integrand inr, after theu andf i integrations have
been carried out, has a finite discontinuity atr51; the inte-
gral converges, however.

The electrostatic energy integrations are reduced to i
grals of the type

E Pm~x!eaxdx5
eax

a (
k5o

m

~21!k
P(k)~x!

ak
,

wherePm(x) is a polynomial inx of degreem andP(k)(x) is
thekth derivative ofPm(x) with respect tox. For the Helm-
holtz free energy one simply integrates the electrostatic
ergy with respect tok. In this integration, integrals of the
type *eax/xdx5Ei(ax) are encountered. While straightfo
ward to evaluate, these integrals can become very tedi
Note that in the volume correction to the electrostatic ene
the r integration ranges from 0 toa/Ri j and since the uppe
limit is always less than 1, only the first integral in Eq.~A3!
contributes. For two grains the volume correction~minus
sign displayed explicitly! to be added to Eq.~12! is

Ui j
d(vol)

5
2g@~11kRi j !pi•pj2~313kRi j 1k2Ri j

2 !pi•R̂i j pj•R̂i j #

2kaekRi j ~11ka!2Ri j
3

,

~A4!

where

g52212e2ka2ka23kae2ka12k2a2e2ka.

Similarly, the volume correction to the Helmholtz free e
ergy is

Fi j
d(vol)5F1i j

d(vol)p1•p21F2i j
d(vol)p1•R̂i j p2•R̂i j , ~A5!

where
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F1i j
d(vol)52

22a1Ri j

a3Ri j
3

1
22a2ka21Ri j

a3ekRi j ~11ka!Ri j
3

2
ek(2a2Ri j )

a3~11ka!~2a2Ri j !
2Ri j

3 @228aRi j
2 17Ri j

3 14a4k~11kRi j !

1a2Ri j ~3815kRi j !22a3~1217kRi j 1k2Ri j
2 !#2

24a3238a2Ri j 128aRi j
2 27Ri j

3

a3~2a2Ri j !
2Ri j

3

1

7e221 Ri j /a~a22Ri j !Ei S ~11ka!~2a2Ri j !

a D
a3Ri j

3
2

7e221 Ri j /a~a2Ri j !~2a2Ri j !Ei S ~11ka!~2a2Ri j !

a D
a4Ri j

3

2

eRi j /a~a22aRi j 1Ri j
2 !Ei S 2

Ri j

a D
a4Ri j

3
1

eRi j /a~a22aRi j 1Ri j
2 !Ei S 2

~11ka!Ri j

a D
a4Ri j

3

2

7e221Ri j /a~a22Ri j !Ei S 22
Ri j

a D
a3Ri j

3
1

7e221 Ri j /a~a2Ri j !~2a2Ri j !Ei S 22
Ri j

a D
a4Ri j

3
~A6!

and

F2i j
d(vol)52

7a223aRi j 1Ri j
2

a4Ri j
3

2
2144a51300a4Ri j 2264a3Ri j

2 1147a2Ri j
3 249aRi j

4 17Ri j
5

a4~2a2Ri j !
3Ri j

3

1
23aRi j 1Ri j

2 1ka3~41kRi j !1a2~71kRi j !

a4ekRi j ~11ka!Ri j
3

1
ek(2a2Ri j )

a4~11ka!~2a2Ri j !
3Ri j

3
„249aRi j

4 17Ri j
5 17a2Ri j

3 ~211kRi j !

18ka6~313kRi j 1k2Ri j
2 !2a3Ri j

2 ~264146kRi j 15k2Ri j
2 !12a4Ri j ~150155kRi j 115k2Ri j

2 1k3Ri j
3 !

24a5~36124kRi j 113k2Ri j
2 12k3Ri j

3 !…2

21e221 Ri j /a~a2Ri j !
2Ei S ~11ka!~2a2Ri j !

a D
a4Ri j

3

1

7e221Ri j /a~2a2Ri j !~3a223aRi j 1Ri j
2 !Ei S ~11ka!~2a2Ri j !

a D
a5Ri j

3

2

eRi j /a~23a313a2Ri j 22aRi j
2 1Ri j

3 !Ei S 2
Ri j

a D
a5Ri j

3
1

eRi j /a~23a313a2Ri j 22aRi j
2 1Ri j

3 !Ei S 2
~11ka!Ri j

a D
a5Ri j

3

1

21e221Ri j /a~a2Ri j !
2Ei S 22

Ri j

a D
a4Ri j

3
2

7e221
Ri j

a ~2a2Ri j !~3a223aRi j 1Ri j
2 !Ei S 22

Ri j

a D
a5Ri j

3
. ~A7!
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